Efficacy of brachial plexus block in postoperative analgesia in trauma surgeries of the upper limb. A single-center observational study.

Carlos Luis García Santana 1 ID *, Carlos Andres Salazar Valarezo 1 ID

1. Postgraduate in Anesthesia, Faculty of Medical Sciences, University of Guayaquil-Ecuador.

Abstract

Introduction: Brachial plexus block provides multiple advantages in postoperative pain management for surgical procedures in inpatients and outpatients. The study’s objective was to determine the effectiveness of brachial plexus block during postoperative pain management in patients undergoing upper limb trauma surgery.

Methods: This observational, nonexperimental, descriptive study and qualitative approach was carried out in the Traumatology Service of the Alcívar Clinic of the City of Guayaquil, Ecuador, from January-October 2022, including patients over 18 years of age undergoing trauma surgical procedures with analgesic brachial plexus blocks. Clinical records were applied to obtain variables: age, sex, days of hospitalization, approach, visual analog pain scale, duration of postoperative analgesia, need or not for analgesic rescue, quality of analgesia, and patient satisfaction. The information collected was entered into a Microsoft Excel file and processed with SPSS Statistical Program version 24, according to the proposed objectives.

Results: One hundred cases were included. The highest frequency of individuals is male, with an average age of 36. The most commonly used access route was supraclavicular (43.0%). A hospitalization range of 1 to 3 days is described. In addition, a relationship is reported between the most frequent access route and hospital stay (X2: 0.000) and adjuvant treatment (X2: 0.000).

Conclusions: Brachial plexus block is suitable as an analgesic method for surgical intervention in upper limb injuries.

Keywords: MeSH: Analgesia; Pain, Postoperative; Pain Management; Brachial Plexus; Operative Surgical Procedures

Abbreviations
Not declared.

Supplementary information
No supplementary materials are declared.

Acknowledgments
Not declared.

Author contributions
Carlos Luis García Santana: Conceptualization, data curation, formal analysis, acquisition of funds, research, writing - original draft.
Carlos Andres Salazar Valarezo: Conceptualization, Data curation, Formal analysis, Methodology, Resources, Supervision, Validation, Visualization, Writing – review and editing.

All the authors have read and approved the final version of the manuscript.

Financing
The authors of this article financed the expenses of this investigation.

Availability of data and materials
Not declared.
Introduction

Brachial plexus block is recognized as the most appropriate anesthetic and analgesic technique for upper extremity surgery. Experts consider it the "gold standard" technique, and it reduces the tension, complexity, and complications presented with general anesthesia [1]. The frequency of use is high, between 70% and 97% of the total anesthetic techniques used in upper limb surgeries [2].

Regional upper limb anesthesia can be obtained by using brachial plexus blockade at different stages of its course: trunks, divisions, cords, and terminal branches. The four most used techniques are the interscalene block, the supraclavicular block, the infraclavicular block, and the axillary block. Each technique has its own unique set of advantages and indications for use [3].

The supraclavicular block is most effective for anesthesia of the middle of the humerus and below. Infraclavicular blocks are functional for procedures that require continuous anesthesia. Axillary blocks provide adequate anesthesia distal to the elbow, and interscalene blocks are best suited for the shoulder and proximal upper extremity.

The two most common methods for locating the appropriate nerves for brachial plexus blocks are nerve stimulation and ultrasound guidance. Recent literature on brachial plexus blocks has primarily focused on these two techniques to determine which is more effective. Ultrasound guidance (USG) allows the operator to visualize the position of the needle within the musculature and is especially useful in patients with anatomical variations [1].

In a 2016 cross-sectional observational study [4] conducted in the United Kingdom, with more than 15,000 patients undergoing surgery, 11% reported severe pain, and 37% reported moderate pain in the initial 24 hours. During the 2017-2018 annual report of the Perioperative Quality Improvement Program (PQIP) [4], information was obtained from 79 hospitals across the United Kingdom. It was highlighted that 48% and 19% of patients reported moderate or severe pain in the surgical area on the first postoperative day, respectively, similar to the most recent publication from 2018-2019 [5].

These types of studies are not limited to the United Kingdom. A German prospective cohort investigation [6] of 50,523 patients reported that up to 47.2% of patients experienced severe pain (numerical rating scale score of at least 8) in the first 24 hours after surgery. However, this varied depending on the type of surgery performed. Furthermore, moderate or severe pain extends to the extended postoperative period [7]. These situations occurred despite pain services that were provided to inpatients, updates, and multidisciplinary postoperative pain management.

The study aimed to determine the effectiveness of brachial plexus block during postoperative pain management of patients undergoing upper limb trauma surgery in a private reference center in Guayaquil, Ecuador.

Materials and methods

Study design

The present study is observational and cross-sectional. The source was prospective.

Scenery

The study was conducted in the Alcívar Hospital Traumatology Service in Guayaquil, Ecuador. The study period was from January 1, 2022, to October 31, 2022.

Participants

Adult patients over 18 years of age were included, in whom a trauma surgical procedure of the upper extremity was performed and underwent brachial plexus block. Patients with a history of neuropathic pain, osteoarthritis, arthritis, or chronic pain were excluded; patients with more than 10% incomplete medical history and with contraindications for performing locoregional techniques.

Variables

The variables were age, education, sex, days of hospitalization, brachial plexus block approach, visual analog scale of pain intensity, duration of the analgesic scale, need for adjuvant analgesia, quality of analgesia, and patient satisfaction.

Data sources/measurements

The source was direct; an electronic form was filled out using data collected from patient surveys. The information was confidential; no personal data were included to identify the study subjects.

Biases

The leading researcher always maintained the data with a guide and records approved in the research protocol to avoid interviewer, information, and memory biases. Observation and selection bias was avoided by applying participant selection criteria. Two researchers independently analyzed each record in duplicate, and the variables were registered in the database once their agreement was verified.
Study size
The sample was probabilistic. The annual case list of surgeries in the traumatology and orthopedics service at the Alcivar Hospital in 2022 was taken, corresponding to 12,000. Using the EPI info™ program (Version 7.2.5, CDC, Atlanta, USA, September 2022) with an expected frequency of 10.3% for upper limb surgeries, a confidence limit of 5%, and a confidence interval of 90%. The sample size was 99 cases.

Quantitative variables
Descriptive and inferential statistics were used. The results of categorical variables are expressed as frequencies and percentages. Scale variables are defined as the mean and standard deviation.

Statistical analysis
Noninferential statistics are used for descriptive analysis. In the inferential analysis, a bivariate analysis compares the type of approach versus the hospitalization period and quality of anesthesia. Chi-square tests were used to measure the association. A P value less than 0.05 was considered statistically significant.

Results
Participants
The study included 100 patients; 20 cases were excluded due to incomplete clinical history.

Description of the study group
There were 100 cases. The sample included 27 women (27.0%) and 73 men (73%). The average age was 36 ±15.2 years. Education was secondary in 95 cases (95%), and primary and illiteracy were secondary in 5 cases (5%). The type of surgery was osteosynthesis at the level of the upper limb: fingers (26%), wrist (25%), ulna/radius (20%). The details are shown in Figure 1. The hospitalization period in 81 cases (81%) was 1 to 3 days; in 16 cases (16%), 4 to 10 days; and in 3 cases, more than three days.

Type of brachial plexus block
The majority were of the supraclavicular type; there were no cases of the infraclavicular route (Table 1).

Bivariate analysis
The type of approach was associated with a shorter hospitalization time in the case of the supraclavicular and interscalene approaches, in which the association was statistically significant. There was a moderate association between the approach routes and hospitalization time, with a Cramer’s V value of 0.245.

According to the quality of analgesia, the three routes were primarily regular, with no significant differences in the association (Table 2).
Table 2. Approach route vs. hospitalization period and quality of analgesia.

<table>
<thead>
<tr>
<th>Boarding route</th>
<th>Hospitalization Period</th>
<th>x^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 to 3 days n=82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supraclavicular</td>
<td>40 (90.9%)</td>
<td>4.222</td>
<td>0.0398</td>
</tr>
<tr>
<td>Axillary</td>
<td>31 (81.58%)</td>
<td>0.007</td>
<td>0.9316</td>
</tr>
<tr>
<td>Interscalene</td>
<td>11 (61.11%)</td>
<td>6.489</td>
<td>0.0109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boarding route</th>
<th>Analgesia Quality</th>
<th>x^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good N=32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supraclavicular</td>
<td>14 (31.82%)</td>
<td>0.001</td>
<td>0.9724</td>
</tr>
<tr>
<td>Axillary</td>
<td>14 (36.84%)</td>
<td>0.660</td>
<td>0.4164</td>
</tr>
<tr>
<td>Interscalene</td>
<td>4 (22.22%)</td>
<td>0.965</td>
<td>0.3261</td>
</tr>
</tbody>
</table>

Satisfaction levels

The satisfaction level surveys were as follows:

- 0 not at all satisfied =0.
- 1 little satisfied =0.
- 2 satisfied =0.
- 3 quite satisfied 33 (33%).
- 4 delighted 67 (67%).

Discussion

In this research, we sought to determine the effectiveness of the brachial plexus block technique during the development of traumatological interventions at the upper limb level. A considerable number of patients were found to undergo this procedure, the predominant male sex, with an average age of 36 years. This similarity was observed in previous studies, which indicate that this technique is applied in young individuals, perhaps because they may be more prone to upper limb injuries due to work and sports activities.

Aksu et al. [8] compared the effects of postoperative analgesia with ultrasound-guided interscalene brachial plexus block and intra-articular bupivacaine in a group of patients undergoing various types of trauma surgeries, with a mean age of 35 years. Likewise, in other investigations focusing on postoperative pain management, the study population obviously corresponded to young adults [9-11].

This research describes the main approaches used for brachial plexus block, with the supraclavicular and axillary being the most frequently used, according to the safety profile reported for them in the literature. Sun et al. [12] established the supraclavicular and axillary routes as a suitable alternative for an analgesic block during upper limb surgeries. Cho et al. [13] described the analgesic and clinical benefits of using the supraclavicular approach in upper limb surgeries, not finding a significant difference between other routes, thus justifying the investigative development of other interscalene block alternatives.

Ultrasonography in regional anesthesia provides a re-definition for performing some blocks, allowing the application of optional techniques to achieve the same block. For the axillary route, to facilitate the block and reduce the number of needle repositionings during its execution, ultrasound-guided techniques with local anesthetic only around the axillary artery have been described in the literature [14, 15]. These techniques were as effective as the perineural technique, without altering the procedure time, and decreased the incidence of paresthesia during the block [16].

During the postoperative period, 30% to 70% of patients report pain related to the surgical process. To reduce the degree of pain during the postoperative period, techniques such as intra-articular anesthesia, opioids, ketamine, NSAIDs, patient-controlled analgesia (PCA), brachial plexus block, and suprascapular and axillary nerve block are used. Although all of these methods are successful in a certain percentage of cases in managing postoperative pain, the conclusion has yet to be reached as to which is the most effective analgesic technique [17].

The use of brachial plexus block has gained importance recently, with favorable results regarding postoperative analgesia and decreased complications. In this study, a low perception of pain was corroborated, with a minimum hospital stay and requirement for adjuvant therapy in a low number of patients. Based on the information previously presented, it is striking that those individuals who maintained a hospital stay of 24 to 48 hours needed pain management since they manifested a change in the level of sensation from mild to moderate. This need for analgesia can be related to other variables, such as recovery of functionality, the extent of the
initial injury, and the applied surgical technique. However, these variables are not considered for the analysis on this occasion.

It is known that upper limb trauma surgeries are associated with intense postoperative pain [16, 17]. Therefore, a selective block of peripheral nerves provides an alternative analgesia that, affiliated with the preoperative education of the patient, can obtain adequate results. Meng et al. [17] expose the effectiveness of this method in shoulder surgeries by managing continuous infusions, depending on the approach used.

The ultrasound-guided supraclavicular approach to the brachial plexus has a high success rate, including ulnar and musculocutaneous nerve blocks, which may be missed with the interscalene and axillary approaches, respectively [18]. A faster onset time of block is allowed with a reduction in the local anesthetic dose. Among the most studied benefits are the reduction of acute and chronic postoperative pain, postoperative nausea and vomiting, and pulmonary complications [19, 20]. Furthermore, the length of hospital stay is clinically and economically crucial.

This study showed that most participants had a hospital stay of less than three days, with recovery of functionality and adequate pain sensation. The variables mentioned were related, finding a significant statistical relationship between the most frequently used approach routes and the hospital stay. As previously described, in various study cohorts, minor complications are evident depending on the approach used, the most common being supraclavicular and axillary complications, similar to what was reported in this study [14, 16, 21].

The use of adjuvant treatment has been considered a variable to assess the quality of analgesia used in the procedure and pain management after surgery. Although opioids are essential analgesics in relieving perioperative pain, regional anesthesia has improved postoperative pain; opioid consumption and its possible complications have decreased [22-24]. The use of adjuvant pain relief agents and peripheral nerve block (via single injection and continuous infusion) is a widespread practice to reduce opioid dependence during perioperative pain management [25-27]. This study assessed the relationship between the use of adjuvant treatment and the intensity of pain reported by patients. It was found that in those who had short stays (less than 24 hours), only 6% of the participants needed this treatment. A significant association is reported between the access route and the hospitalization period, with a moderate relationship. This association is not the case for the relationship between the quality of adjuvant therapy and the approach, where there is no relationship between these variables.

Finally, the individuals’ satisfaction level during their postoperative recovery was assessed based on the sensation of pain perceived, and it was found that a considerable number were satisfied with the results obtained. However, none of the participants reported 100% satisfaction, which has been associated with the recovery course after the surgical intervention. These findings agree with previous reports, in which patients require basic concepts of the technique, especially of its recovery [19]. In another study, the perioperative knowledge of patients was assessed based on the development of informed consent, and poor and deficient knowledge was reported; further studies are needed to obtain solid conclusions regarding the variable in question [28].

Conclusions
The brachial plexus block is suitable as an analgesic method for surgical intervention in upper limb injuries.

References


Scalene Brachial Plexus Block on Postoperative Analgesia and Different 0.2% Ropivacaine Infusion Regimens for Continuous Inter-


5. PMid:30134883 PMCID: PMC6107674


7. PMid:31583679


9. PMid:34871240 PMCID: PMC3568401


11. PMid:31583679


13. PMid:25871314 PMCID: PMC497458


15. PMid:20142336


17. PMid:28651779


19. PMid:35592818 PMCID: PMC9113128


22. PMid:34442220 PMCID: PMC8394722


24. PMid:20337970


27. PMid:31903331 PMCID: PMC6932520


29. PMid:34150564 PMCID: PMC8207839


33. PMid:32331710 PMCID: PMC7158241


35. PMid:33013041 PMCID: PMC7480314


37. PMid:26432814 PMCID: PMC4672254

Actas Médicas (Ecuador) 2023:33(2) Page 109
Statements

Ethics committee approval and consent to participate
The ethics committee of the Faculty of Medicine of the University of Guayaquil approved the study.

Publication consent
Not needed when patient-specific images, X-rays, and studies are not published.

Conflicts of interest
The authors declare that they have no conflicts of interest.

Author information

Carlos Luis García Santana. Surgeon from the Eloy Alfaro Lay University of Manabí (Ecuador, 2014). Master in Management in Health for him Local development by the Private Technical University of Loja (Ecuador, 2018). Specialist in Anesthesiology from the University of Guayaquil (Ecuador, 2023). Email: carlosclgs@hotmail.com

ORCID https://orcid.org/0000-0002-8614-4835

Carlos Andres Salazar Valarezo, Doctor from the University of Guayaquil (Ecuador, 2009). Specialist in Anesthesiology and Resuscitation from the Universidad Católica Santiago de Guayaquil (Ecuador, 2015). Postgraduate professor at the University of Guayaquil. Email: el_caleche@hotmail.com

ORCID https://orcid.org/0009-0004-9532-1372

Editor's Note
Actas Médicas Magazine (Ecuador) remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

How to cite this article: